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Gravitational and viscous torques acting on swimming micro-organisms orient their 
trajectories. The horizontal component of the swimming velocity of individuals of 
the many algal genera having a centre of mass displaced toward the rear of the cell 
is therefore in the direction g x (V x u) ,  where g is the acceleration due to gravity. 
This phenomenon, called gyrotaxis, results in the cells swimming toward downward- 
flowing regions of their environment. Since the cells’ density is greater than that of 
water, regions of high (low) cell concentration sink (rise). The horizontal component 
of gyrotaxis reinforces this type of buoyant convection, whilst the vertical one 
maintains it. Gyrotactic buoyant convection results in the spontaneous generation of 
descending plumes containing high cell concentration, in spatially regular concen- 
tration/convection patterns, and in the perturbation of initially4 well-defined flow 
fields. This paper presents a height- and azimuth-independent steady-state solution 
of the Navier-Stokes and cell conservation equations. This solution, and the growth 
rate of a concentration fluctuation, are shown to be governed by a parameter similar 
to a Rayleigh number. 

1. Introduction 
The swimming of micro-organisms comprises two aspects : propulsion and orienta- 

tion. G. I. Taylor’s paper of 1951 was the first to  consider the fluid dynamics of 
propulsion. This paper is concerned with the orientation of the cells’ trajectories by 
one or more torques applied to  the cell bodies, and with the resultant individual and 
collective phenomena. Swimming micro-organisms progress along trajectories whose 
geometry depends on the way in which the swimmers control their propulsive 
apparatus and on torques which orient their bodies. When the distribution of mass 
within an organism is asymmetric, so that its centres of gravity and buoyancy 
do not coincide (figure l ) ,  gravity provides a torque which tends to  maintain 
the organism’s axis vertical. Gradients of the velocity of the fluid within which the 
organism swims result in a viscous torque. I n  a neutral environment, when the 
gravitational and viscous torques compensate, they determine the orientation of 
the swimmer and therefore its trajectory, since the direction of locomotion is 
determined by its axis. A neutral environment is one which does not stimulate a 
micro-organism’s senses or alter its metabolism. 

Micro-organisms may seek to accumulate in or depart from regions of their 
environment that are distinguished by spatial variations of stimuli, such as chemical 
concentration, light intensity, or direction of illumination. Such behaviour, which 
requires interaction of organism and stimulus and generally seems purposeful, has 
been investigated since the middle of the last century. A complex categorization 
(Diehn et al. 1977) that  describes various sensing modes and stimulus-response 
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FIGURE 1 .  Orientation of the swimming velocity V ,  of an algal cell idealized as a sphere. L is the 
rearward displacement of the centre of mass (*) relative to the geometrical centre (+). As in (2),  
the gravitational torque Tg = mgL sin 0 is balanced by the viscous torque Tp = 4xpa3(V x u ) ~ ,  where 
(V x u ) ~  is the horizontal component of vorticity. The cells swim in the direction - ( L / L ) ,  propelled 
by their flagella F. 

sequences has been developed. I n  the simplest version, stimulus-guided locomotion 
is called a ‘taxis’. For example, swimming toward (away) from a light source is 
positive (negative) phototaxis. Swimming along a chemical concentration gradient 
is chemotaxis. 

Physically determined taxes (Kessler 1986) arise from torques that orient swim- 
ming cells. Thus, upswimming, or negative geotaxis, can be due to  gravitational 
torque or to a combination of viscous and gravitational torques (Roberts 1981). 
Compensating viscous and gravitational torques produce gyrotaxis (Kessler 1984). 

Negative geotaxis results in up-accumulation of cell populations. Gyrotaxis guides 
swimming cells horizontally, away from upwelling and toward downwelling regions 
of fluid. Since the density of the swimmers is greater than that of their embedding 
medium, accumulative behaviour results in buoyant convection. A situation similar 
to BBnard convection, due to upswimming, has been discussed by Childress, 
Lavandowsky & Spiegel(l975). Since gyrotaxis guides cells laterally into descending 
regions of fluid (Kessler 1985a, b ) ,  it  reinforces population fluctuations. These 
collective effects are modified by the cells’ ever-present random locomotion, which 
can to a first approximation be modelled by diffusion. This paper discusses the 
collective phenomena just introduced. It also reviews the gyrotactic generation of 
hydrodynamically focused beams of cells. 

2. Cell characteristics 
The micro-organisms considered here are single cells of swimming algae. Although 

their shape is approximately ellipsoidal, in many cases i t  is almost spherical, and that 
shape will be assumed here. They vary in diameter from 0.4 to 4 x lop3 cm, are 
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Symbol/Name 

Density 
Specific gravity 
Average radius 
Volume per cell 
Swimming speed 
Centre of gravity offset 
Diffusivity of cells 
Concentration 
Typical background 
Viscosity 
= 1') 

Estimated value used 
Range in calculations 

Cell properties 

1.01-1.10 
0.01-0.10 

3 x 10-"-3 x lo-' 
( f 2  x 10-2 
M . l a  
5 x 10-5-5 x 

2 x 10-4-2 x 10-3 

(fl/ll 

~ ~ 1 0 7  
10-2 

1.05 gm cm-3 
0.05 
5 x cm 
5 x cm3 

cm s-l 
cm 

5 x om2 s-l 

lo6 cells 

(cmz 5-l)  

gm cm-' 5-l 

Combination properties 

Gyrotactic length CP vc lgLPc  5 x lop2 cm 
(for a sphere C = 3)  

concentration coupling 

P 

a Fluid velocity/cell @PIP)  S"/V  2.5 x om2 s-l 

l / T g  Growth/recruitment rate aPn0 0.13 s-l 
G Gyrotactic Rayleigh number ( A P l P )  "noDZ 250A2 [ l ]  

yn, Radius scale for @PIP)  "no P 1/0.172 cm-2 
( A  is a radial dimension in cm) 

self-focusing 8vD 

V D  

TABLE 1. Definitions and magnitude of parameters. The parameter ranges are derived from 
observations, from the literature, and by guessing. The numerical values in the last column apply 
approximately ( f 50 yo ? )  to a favourite test organism, Chlamydomonas nivalis. The value of D is 
a pure guess, based on collision mean-free paths ( D  x Vc/12na2n), where n is 2 or 3 times no, or 
average distance S covered by swimming cells between radical changes in direction ( D  x ;V, 6) .  
Observation indicates that S x 100a. The significance of A depends upon circumstances. 

equipped with two or four flagella of length a body diameter or greater, and they 
swim forward by means of breaststroke-like motions (Nultsch 1983). Their centre of 
gravity is displaced rearward, relative to their geometric centre. As a result, dead 
cells tend to be suspended with their flagella oriented upward and, on average, live 
cells swim upwards. The density of cells is approximately 5% greater than water. 
They swim at  speeds V, up to 2 x em s-l. 
The cell Reynolds number is therefore very much less than 1. Typical genus names 
are Chlamydomonas, Carteria, and Dunaliella, a salt-water type. A summary of 
characteristics and nomenclature is given in table 1.  

em s-l, the average being 0.5-1 .O x 

3. Gyrotaxis 
The viscous torque on a sphere of radius a in a fluid of viscosity ,u is given by 

T = 47cpa3(V x ~ - 2 5 1 ) ,  

where u is the fluid velocity field and 51 the sphere's angular velocity. The 
gravitational torque on a sphere whose centre of mass is displaced by L from its 
geometric centre is mL x g ; the sphere's mass is m, and g is the acceleration due to 
gravity. For algal cells of the type considered, L is a few percent of the cell radius. 
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The offset is caused by the posterior location of organelles, such as the chloroplast. 
Steady orientation of the sphere axis L is specified by 

mL xg+4npa3V x u = 0, (2 )  
given V x u. 

Cells of the type considered here swim forward with velocity V = - ( L / L )  V,. When 
u = w(r)2,  where r is the radial coordinate in cylindrical polar coordinates, 2 is an 
upward unit vector, and V = V, P + V, 2 ,  

4npa3 dw dui 
mgL dr dr  

v =---- =-p-. (3) 

The length p summarizes a cell’s gyrotactic behaviour within a single parameter. 
Equation ( 3 )  assumes the stable configuration (Kessler 1985b, 1986), where the centre 
of mass lies below the centre of the cell. 

This paper considers only the radial component of gyrotaxis, given by (3). The 
( z ,  $)-dependence will be suppressed. This assumption allows the derivation of 
relatively simple basic results which bear on the radially symmetric accumulation 
of cells into tall descending columns, either in prescribed flows, or in flows generated 
by buoyant convection. Although i t  permits an estimate of the steady-state spacing 
of concentration/convection patterns, it eliminates the possibility of obtaining a 
detailed description of their geometry, or of the role of upward swimming in 
maintaining the patterns. 

Equation (3) states that cells swim toward the axis of a vertically downward 
cylindrical Poiseuille flow, w(r) = - w(0) (1 - r2 /R2) ,  and toward the periphery of an 
upward one, as discussed in Kessler (19853), and rather in contrast to the diffusive 
dispersion of passive solutes (Taylor 1953) or radial accumulation of inert particles 
(Happel & Brenner 1965). The equation for the cell concentration n(r , z )  is also 
contained in Kessler (19853). The radial component of the trajectory in the downward 
Poiseuille flow is given by 

dr Zpw(0)r 
dt -- R2 ’ 
_ -  

(4) r = r ~-~P-U(O)~/R*.  
0 or 

The time constant R2/2,8w(0) x 25 s for R x 0.5 cm, /3 = 5 x lo-* cm (table 1 )  and 
w(0) x 0.1 cm s-l. Figure 2 shows a beam of swimming cells. The generation of the 
beam is shown in Kessler (19853, figures 2, 3 and 4).  Outward focusing in an upflow 
is also shown in that paper (figure 6) and in Kessler ( 1 9 8 5 ~ ) .  

Random swimming is superimposed upon gyrotaxis. Although its characteristics 
are not well understood, the conventional modelling is by diffusion. The radial cell 
flux j is then given by 

an 
j=nV,-D-- ,  

ar 

where n is the cell concentration and D the diffusivity. One may guess the magnitude 
of D by watching cells through a microscope. One finds that typical algal cells tend 
to swim ‘straight’ about 50-100 body lengths between substantial changes of 
direction. Then D x const V ,  a ,  or D x 5 x lop4 cm2 s-l. If collisions dominate 
change of direction, D x Vc/3na,  where CT is a collision cross-section (cm2)). In  a 
typical axially focused beam of cells, the guessed magnitudes of these rather 
differently obtained diffusivities is similar. 
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FIGURE 2. Focused beam of cells. Fluid containing the swimming algae Chlamydomonas nivalis flows 
slowly (centre velocity x 0.1 cm s-l) down a cylindrical tube with a flat front 8 cm across. The beam 
of cells is produced by gyrotaxis and broadened by diffusion. 

The cell conservation equation is 

l a  an 
-+u*Vn = --- rj. 

r ar at 

The u-Vn term vanishes when u = &w(r, t )  and n = n(r ) .  For steady state, 
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(8) 

where no and wo are constants pertaining to the same reference location. When 
w(r) = -w(O) (1 - r2 /R2) ,  wo = -w(O) and no = n ( O ) ,  

(9) 

or n = n , - ( P l D ) ( W - W , ) ,  

n = n(0) e-Pu’(0) r z lDR2 .  

This distribution has been (approximately) observed by the author and G. J. Morris, 
using a segmented collector a t  the bottom of the focusing tube (manuscript in 
preparation). It is qualitatively indicated by figure 2. 

4. Collective phenomena 

v and density pc,  is 

where pw is the density of water and A p  = pc-p,. When cells accumulate in a fluid 
region, its density increases relative to surrounding regions. When a cylindrical 
downward flow produces a beam of cells (equation (8)) near the axis, the weight of 
that  high-cell-concentration region generates a downward buoyant convection 
velocity which adds to the initial Poiseuille flow. If the flow rate 21tQ is kept constant, 
the buoyant component generates a pressure gradient which results in a peripheral 
upward velocity of the fluid such that s,” w ( r )  r d r  = Q. It is observed that when the 
focusing Poiseuille flow is stopped the cell beam, which is approximately Gaussian 
(equation (9)), remains, continues to  sink and appears to  accumulate more cells. Thus 
the buoyant convection and associated pressure gradient continue, trapping the cells 
located in the region where dwldr > 0. These cells swim toward the axis, where they 
increase the mass and therefore the downward convection, the pressure gradient and 
the vorticity. Such ‘green holes’ are somewhat analogous to black holes, since (i) the 
‘attraction’ of cells toward the axis is proportional to  the weight of cells already in 
its vicinity, (ii) there is a limiting radius, where dwldr = 0, beyond which the cells 
move outward, and (iii) a singularity develops a t  r = 0, as will be shown. 

The generation of self-focused cell streamers can also occur spontaneously. Local 
fluctuations in cell concentrations sink, thereby generating a fluid velocity field which 
accumulates more cells. For that reason, initially well-mixed cell cultures containing 
no 2 lo6 cells cmP3 tend to break up into downward-convecting columns containing 
higher than average cell concentrations, separated by upward-convecting regions 
containing few cells (Kessler 1986) and figure 3. This effect occurs even in very tall 
vessels (Kessler 19853), far below the upper surface of the fluid. This fact implies that 
the density gradient which develops near the top of a fluid containing upward- 
swimming heavy cells is not required to initiate buoyant convection. Typical times 
for the initial appearance of visible streamers are 10-30 s. 

A concentrated cell culture of low aspect ratio (height/width) tends to generate 
regular patterns of cell concentration and fluid convection, partly because of negative 
geotaxis (Childress et al. 1975) and partly owing to gyrotaxis. Several examples are 
shown in Kessler (1985 b ,  1986). Such patterns may be thought of as an array of many 
coexisting self-focused streamers. When the cells entrained in downwelling fluid 
arrive at the bottom of the vessel, they are advected upward in the low concentration, 
slowly upwelling return fluid, and they also swim upward until they are refocused 
into a downward-streaming column. The downward columns, or streamers, even- 
tually arrange themselves in a regular array. When the fluid layer containing the cells 

The density of a fluid containing a concentration of n cells ~ m - ~ ,  each of volume 

p = Apnu+p,, (10) 
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FIGURE 3. Spontaneous breakup of an initially well-stirred algal cell culture. The dark streaks are 
self-focused descending regions containing a higher concentration of cells than the intervening fluid. 
Nucleation appears to have been fairly random throughout the vessel - but note the absence of 
streamers near the upper interface. Their sinuous character may be due to motions of the fluid 
remaining from stirring, or to temperature-gradient-driven convection. Time after stirring : 
approximately 5 min. 

is deeper than 1-2 cm, this array, observed horizontally, is visible only near the 
bottom of the container. The steady-state theory presented below provides an 
estimate of the column spacing. This estimate must eventually be corrected by 
including (2, $)-dependences. 

It is generally observed that any individual long column of gyrotactically focused 
cells tends to develop blips, localized regions of high cell concentration, which grow, 
and of course sink faster than the focused beam. This phenomenon occurs when no, 
the background concentration, is ‘high ’. In  a vertical cylindrical focusing tube, the 
effect is reduced when there is a net downward flow 3nQ, and enhanced when Q = 0, 
i.e. when the entire velocity field is due to the sinking cell column. 

The effect is shown in figure 4 a t  an early stage, superimposed on a cell beam focused 
in a downflow. When Q is set equal to zero, the blips eventually develop into beautiful 
thermal-like structures, attached to a vortex ring (figure 5 ) .  Isolated streamers 
descending in a wide bottle also generate the same effect’ (figure 6).  
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FIGURE 4. Spontaneous formation of high concentration regions on a gyrotactically focused algal 
beam. The diameter of the cylindrical tube is 1.3 cm. The central streak is the focused beam, and 
the superimposed bulbous expansions are growing ‘blips ’. The central velocity of the focusing 
downward Poiseuille flow is u,, z 0.1 ern s-l. The (unknown) actual central flow velocity is more 
rapid because of the weight of the beam. The blips sink with velocity 2uo-5uo. 
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FIGURE 5. Blip instability at a late stage. The blips from figure 4 have grown into a structure having 
a toroidally circulating rear section. Upper blips sometimes catch lower ones and amalgamate with 
them. Near the top, the central (darkest) blip has just passed through the preceding one, distorting 
it. The scale is in mm. 

4.1. Steady state 

is 
The Navier-Stokes equation for the velocity w(r)  = 2w(r) of a steady, slow viscous 
flow of fluid containing n(r )  cells 

Pz 1 d du, 
- - - r - =  an(r)+--, 

P r dr dr 

where the cell-concentration/fluid-velocity coupling constant a = (Ap/p)  vg lv ,  ,u is 
the viscosity, v = ,u /p  and the vertical pressure gradient p ,  includes p g ,  where p is 
the average fluid density. The (z,$)-dependence has been suppressed in order to 
facilitate finding a solution, and in approximate conformity with a wide range of 
experimental conditions. The pressure gradient can be inferred from the condition 
jf w ( r ) r d r  = Q, where 27cQ is a prescribed flow rate and R is the radius of the 
container. The solution must satisfy ~ ( 0 )  finite, w(R) = 0, dujldr = 0 a t  r = 0, and 
conservation of cells, so n ( r )  r dr = $R2no, where no is the initially uniform background 
concentration. No vertical cell-flux condition is imposed for this z-independent 

R 
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FIGURE 6. Blips in a wide container. A stream of cells emerges from a leak in a cotton-wool plug 
at the top of an erlenmyer flask. LJnlike passive plumes, the beam narrows, due to gyrotaxis, and 
spontaneously forms blips, even in this situation where the outer surface is remote, see also Kessler 
(1986). figure 12. 

situation. The cell concentration n(r )  is given by (8). Equations (7)  and (8) imply 
that the radial cell flux vanishes a t  all r < R. 

When an(r) 6 p,/p, the solution of (1 1) is Poiseuille flow, with n ( r )  then given by 
( i O ) ,  zo(0) being determined from Q. In  general, inserting n ( r )  from (8) into (1  1 )  gives 

_ _  I d  - r - d logn = - 4 n+-pp,. P 
r dr  dr D DP 

A suitable closed-form solution for (12) and subsidiary conditions can be found when 
p z  = 0. This extra condition can be met exactly by the proper experimental choice 
of Q ,  and approximately automatically when R becomes very large. 

One set of generic solutions of (12) is given by 

n ( r )  = d r - 2  coshP2 (B+C logr), (13) 
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where A ,  B,  C are arbitrary constants. The present context requires n(0) to be finite 
and n(co)-tO. Then C = 1 and 

4 0 )  
(1  + yn(0) r 2 ) 2  ’ 

n,(r) = 

where y = @/SO. A general discussion of other solutions of (12). with p ,  = 0, may 
be found in Joseph & Lundgren (1973). Equation (12) also appears in Childress & 
Percus (1981). in the context of chemotaxis, where the concentration of chemical 
attractant replaces zu(r). The central concentration n(O), should be found from cell 
number conservation, i.e. 

s,” n(r )  r dr  = $no R2, (15) 

or = no R2. 
n(0) R2 

1 + yn(0)  R2 

It appears that  when yn(0) R2 9 1 ,  no = l /y ,  which is nonsense, since y characterizes 
the properties of the individual cells and of the fluid and has nothing to  do with cell 
concentration! If one returns to (15) and integrates to  an intermediate radius 
R. < R. I 

where n, is the average concentration for 0 < r < R,. Inverting (17),  one finds that 

n, 
1 - yn, Rt n(0) = 

It is now evident that  n(0) blows up when yn, R:+ 1 .  For larger values of yn, R:, 
(14) is no longer a valid solution. Since n, 2 no, one may consider nRt = n/yno to 
be the maximum area over which cells can collect themselves into a steady columnar 
solution of (12) (with p ,  = 0). The limited capacity of the solution given by (14) arises 
from the fact that  its width as well as its height is related to n(0). 

There are two ways of considering a container having radial dimension R % R, : 
(a )  Steady state. Many replicas of the gyrotactic columns described by (14) can 

be set up in such a container. Since the symmetric radial dependence of the solution 
has short range, one may suppose that the interference between neighbouring 
columns will not change the basic properties of the solution. The total area of N 
columns approximately equals the area of the container, i.e. Nnlyn, x nR2. For a 
square pattern, which occurs sometimes (Kessler 1985b), N x nR2/12, where 1 is the 
mean column spacing. Thus l 2  x llyn,. For the values given in table 1, 1 x 0.17 cm 
for no = lo6, which closely matches observation. It should be realized, however, that 
this calculation must be corrected by the inclusion of cell flux conservation, total fluid 
flow conservation, ( z ,  $)-dependence, and proper matching. 

(b )  tinsteady case. If one arranges for the presence of only a single axial column 
of cells, e.g. by starting one with Poiseuille flow focusing, the velocity field of the 
sinking column continues to attract cells toward the axis even when the no yR2 = 1 
limit is exceeded. Since these cells cannot be accommodated into the steady solution, 
an intrinsically time-dependent mode must arise. It seems very likely that the blips 
(figures 3-5) which are ( t ,  2)-dependent structures originate in this way. 
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The velocity field of the steady solution is found by combining (8) and (14) and 
the boundary conditions. It is 

(19) 
2 0  (1 + yn(0) r 2 )  

w(r) = - log 
P (1+rn(O)R2)’ 

At large r ,  w(r) is approximately proportional to log r even when the core is unsteady. 
This dependence corresponds to a laminar cylindrical flow driven by a thin, heavy 
immiscible axial column of fluid sedimenting within lighter fluid contained in a 
cylindrical enclosure. The velocity scale D/P must then be replaced by a factor 
proportional to the density of the sedimenting column. In  any event, the dependence 
of dw/dr on l / r  causes an inward flux of cells, as shown by (3) and (5). 

Inserting the normalization condition, (18), with R, = R and n1 = no into (19), one 
obtains 

(20 ) 
2 0  

w(r) = -log[1+n,y(r2-R2)]. 
P 

The condition no yR2 < 1 is again required, to maintain a finite value for w(0). 

5. Growth or decay of concentration fluctuations 
Consider a cell culture initially having uniform cell concentration no and fluid 

velocity w(r) = 0. According to (11)) a fluctuation in concentration, nf(r, t )  produces 
a fluctuation in w(r), which tends to reinforce the concentration fluctuation. The cells’ 
random swimming, or diffusion, tends to disperse the fluctuation. Fluctuations can 
spontaneously result from the cells’ random swimming, or they may be caused 
‘externally ’ by fluid motions or non-uniform illumination. 

Assuming only r-dependence, the growth or decay of a fluctuation is governed by 
cell conservation. Equation (6) now reads‘ 

r - = a  aw JOr nf(r’. t )  r‘ dr’ 
ar 

Changes in p ,  can be ignored when the containing vessel’s radius is much larger than 
that of the fluctuation. 

The linear approximation for growth of a perturbation can be obtained by setting 
nf(r, t )  = nl(t)f(r) and assuming that nl(t)/no 4 1. Equation (21) then yields 
f ( r )  = Jo(r/h)  and nl(t) = n,(O) exp ( t / 7 ) ,  where Jo is the Bessel function of zero order. 
The choice of a solution which has a finite maximum a t  r = 0 and a decreasing value 
a t  large r requires h2 > 0. The value of h is determined by particle conservation, to  
give hV-l =j;/R, where j; is the vth root of J,, and R is either the radius of the 
container or the (artificially chosen) radius of the perturbation. This solution also 
demands that 1/7 = D/h2. Thus the perturbation grows when u&,h2/D > 1.  
This linear solution can be used to estimate the nonlinear dependence. Setting 
nf(r, t )  = nl(t) Jo[r /h( t ) ]  and expanding the result to order ( r / A ) 2 ,  one obtains 

and 
d logh  

- -a/3nl. (23) 
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These equations indicate the growth of nl ( t )  and imply narrowing. However, if h 
is chosen by a fixed boundary condition, i t  may not change, and (23)  is simply an 
indication that in a proper normal-mode expansion, 

the trend would be toward narrowing. 
If the nonlinear expansion is begun with a Gaussian perturbation, 

n, = nl( t )  exp - [r/h(t)12, the width is summarized by h( t ) .  Such a perturbation could 
be obtained experimentally by a short interval of Poiseuille flow. In  that case, 
expanding to  r2 /h2,  one obtains 

- -2apn1+4D. (25)  
dh2 
dt 
-- and 

This set is very similar to (22) and (23)  but i t  also includes the diffusive broadening 
of the width when there is no gyrotactic narrowing. Then, 

where 117 z apn0-4D/h,2. For t / T - - t O ,  

Analysis of long-time growth requires the exact normal-mode expansion in Bessel 
functions. 

In  the limit of vanishingly small initial perturbation amplitude n,(O), the amplitude 
nl( t )  changes at the rate 7-l = (apn0-4D/h,2). The condition for growth is remi- 
niscent of a Rayleigh-number criterion, with the gyrotactic length ,B replacing a 
geometric dimension. When 

the perturbation grows. T~ and rg are the time constants for diffusive decay and 
gyrotactic growth or recruitment. For the value of G given in table 1 ,  the perturbation 
grows when h,2 > 41250 = 1.6 x l op2  cm2. This value seems appropriate, considering 
experimental observations. When diffusion is negligible, the growth rate is given by 
@no = 1 / ~ ~  z 1/10 s-l, according to table 1. this rate is probably too rapid by 
approximately a factor of 2. It is, in any case, hard to  observe because of extraneous 
perturbing factors, such as fluid motion remaining from earlier mixing (Kessler 
1985b). 

No attempt has been made to find decaying fluctuations for small no. It is difficult 
directly to observe cells at low concentration, and it has been found that flow- 
visualization techniques that use inert particles tend to  modify cell behaviour. 

6. Discussion and conclusions 
Gravitational and viscous torques determine the average orientation of the 

trajectories of some swimming micro-organisms, such as single algal cells. As a result, 
algae that are suspended in a downward cylindrical Poiseuille flow swim toward its 
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axis. They swim toward the periphery in an upward flow. Cell separation techniques 
can be based on this phenomenon (Kessler 1986). It may also have significance in 
the non-uniform distribution of phytoplankton. a phenomenon which is frequently 
observed in nature. 

Collective phenomena arise because of gyrotactic cell guidance, and because the 
cells are heavier than their suspending fluid. Cells accumulate in downflows owing 
to their interaction with gradients of the fluid velocity, whilst locally high cell 
concentrations generate downward buoyant convection of the concentrated region, 
a t  a rate that  is generally higher than the cell's swimming speed. Because their centres 
of gravity are displaced rearward, individual cells tend to swim up in still water and 
transversely from ascending into descending regions of fluid. Thus the upswimming 
of individual cells is the cause of collective descent. 

The dependence of collective phenomena on height and azimuth can be neglected 
in many experimental situations. With this assumption, and for small or zero 
self-consistently generated pressure gradients, a steady-state radial solution of the 
fluid momentum and cell conservation equations has been found. This solution 
provides a measure of the periodic spacing of gyrotactic concentration/convection 
patterns. It also provides a novel criterion for transition to time-varying behaviour. 
Circumstantial evidence suggests that  the previously described (Kessler 1985 b )  blip 
instability is connected with that transition. Since the steady-state theory given in 
this paper avoids any consideration of z- and t-dependence, nothing further can be 
said about the generation of the blips. The theory simply states that  when no yR2 + 1,  
the concentration profile collapses to a singularity, and when no yR2 > 1, the 
( t ,  2)-independent treatment becomes invalid. It may be that when gyrotaxis is 
included in the treatment of Childress et al. (1975), their type of analysis may shed 
further light on the effect. 

It is also rather surprising that (Childress & Percus 1981; Childress 1984) the 
chemotaxis of slime-mold amoebae is governed by equations similar to the ones 
presented in this paper, with w(r , t )  replaced by the concentration of a chemo- 
attractant. These authors also found that the cell system collapses toward the axis 
when a threshold analogous to no yR2+ 1 is exceeded. It may be that this type of 
collapse is not unusual for interacting populations of cells. I n  that case is could be 
a basic component of biological self-organization. 

Some additional insight into the origin of the transition criterion may be gained 
by noting that (18) is the solution of 

-- dn(0) - [ynfO)] %(Of,  
dRt  133) 

with T L ( O ) ~ : , ~  = n,. Equation (33) bypasses the previously given, more complex and 
explicit mathematical development. It assumes that the spatial accumulation rate 
yn(0)  is proportional to  the concentration. Equation (33) clearly demonstrates the 
limited cell-holding capacity of the gyrotactically concentrated column. The 
condition Y L ( O ) ~ ; , ~  = n,  means that when the accumulation radius is zero, the cell 
Concentration everywhere remains a t  its average value. 

The growth rate of a positive concentration fluctuation and the spacing of 
gyrotactic concentration/convection patterns were both found to be governed by a 
Rayleigh-number-like parameter G = no yh2. For the growth rate h = A, is the initial 
width of the fluctuation. For patterns h = R,, the pattern spacing. The gyrotaxis- 
characterizing constant /3, which is contained in y ,  is the third length in G. 

Much additional work is required. Gyrotaxis of ellipsoidal cells embedded in a fluid 
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with vorticity and strain is being investigated with T. J. Pedley. The complete set 
of equations without suppression of (4, x )  remains to be solved. Experiments that  will, 
hopefully, yield more definitive values of D are underway. It is also necessary to 
ascertain whether the autorotation of the cells (Nultsch 1983) has any substantial 
effect. Finally, the question of the combination of taxes (e.g. light plus gyrotaxis), 
which leads to radical changes in pattern symmetry (Kessler 1986), remains wide 
open. 

I should like to thank T. J. Pedley for a series of illuminating discussions which 
resulted in improvements, including the removal of an error from the original 
manuscript and the use of Bessel functions for treating the growth of cell concen- 
tration. I should also like to thank N. A. Hill for several important suggestions, the 
National Science Foundation, which supported attendance a t  the Symposium, and 
NSF Grant INT 85-13696. 
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